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In this paper, we establish the underlying quantum dynamical algebra SU(1,1) for
some one-dimensional exactly solvable potentials by using the shift operators method.
The connection between SU(1,1) algebra and the radial Hamiltionian problems is also
discussed.
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1. INTRODUCTION

Exactly solvable models are very important in physics. They are impor-
tant not just from a theoretical point of view but also from the experimentalist’s
perspective because in such cases theoretical results and experimental results
can be compared without ambiguity. Exactly solvable potentials especially in-
cluding one-dimensional or spherically symmetric ones have extensively played
the indispensable roles in condensed matter, biophysics, nuclear physics, quan-
tum optics and solid-state physics. Those familiar potentials embrace, for in-
stance, the typical harmonic oscillator potential, conventional Coulomb potential,
one dimensional Morse potential (1929), the Rosen–Morse potential (1932), the
Pöschl–Teller potential (Pöschl and Teller, 1933; Grosche, 1989), the Hulthén
potential, the Kratzer’s molecular potential, and the famous Yukawa potential,
etc. (Flügge, 1974). Thereinto, the Morse potential and Kratzer’s molecular po-
tential are utilized to describe the anharmonicity and bond dissociation of di-
atomic molecules. Another noticeable potential with short-range properties is
the Pöschl–Teller potential, of which the generalized coherent states (Crawford
and Vrsay, 1998), nonlinear properties (Chen et al., 1998; Quesne, 1999), and
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supersymmetric extension (Dı́az et al., 1999) have been widely studied. Addi-
tionally, in supersymmetric (SUSY) quantum mechanics, the shaped invariant
potentials have also been mooted (Gendenstein, 1983; Dutt et al., 1986; Cooper
et al., 1988; Khare and Sukhatme, 1988; Dabrowska et al., 1988) In particular, a
large class of such potentials is the Natanzon class (Natanzon, 1979; Fukui and
Aizawa, 1993; Dutt et al., 1993; Roychoudhury et al., 2001; Znojil et al., 2001).

The preference to deal with those potentials in modern quantum mechanics
adopts the abstract formulation and stresses the special nature of wave mechanics.
However, the machinery of wave mechanics such as choice of coordinate system,
separation of variables, boundary conditions, single-valuedness can obscure the
underlying quantum mechanical principles and complicate the analysis. In this
way, the operator methods which mainly consist of noncommutative algebra and
the shift operator factorization to some extent can avoid these flaws. Algebraic
methods (Kamran and Olver, 1990; Celeghini et al., 1985) exploring the under-
lying Lie symmetry and its associated algebra have been widely used to study
many of these exactly solvable potentials, for instance, Darboux transformation,
Infeld–Hull transformation (Infeld and Hull, 1951; Stahlhofen and Bleuler, 1989),
Mielnick facorization (1984), SUSY quantum mechanics, inverse scattering the-
ory (Hoppe, 1992), and intertwining technique (Dı́az et al., 1999). Operators
methods with shift operators (i.e., raising and lowering operators) for the Hamil-
tonian of exactly solvable potentials have been presented in De Lange and Raab
(1991). In 1993, nonlinear deformations of SU(2) and SU(1,1) algebras (NLDA)
with two deforming functions g(J0) and f (J0) are introduced by Delbecq and
Quesne (1993). Subsequently, in 1998 Chen et al. (1998) applied successfully the
nonlinear deformation algebra to a physical system with Pöschl–Teller potential,
and furthermore they tuned the NLDA naturally to a linear algebra SU(1,1) by
readjusting the generators (Chen et al., 1998; Quesne, 1999); in other words,
the underlying quantum dynamical algebra (QDA) SU(1,1) was revealed for the
Pöschl–Teller potential, and one may note that the crucial step to establish the
QDA is firstly to construct the shift operators for the potentials. In 2000, following
the similar method a unified approach that emphasized on constructing the shift
operators of exactly one-dimensional solvable potentials was provided (Ge et al.,
2000), but without pointing out the concomitant algebraic structures. The purpose
of this paper is to go beyond Ge et al. (2000) and establish systematically the cor-
responding underlying quantum dynamical algebra for the potentials discussed.
Interestingly and also surprisingly, these exactly solvable potentials possess the
same simple algebra SU(1,1).

The paper is organized as follows: In Sec. 2, we first briefly review the Pöschl–
Teller potential problem discussed in Chen et al. (1998) and Quesne (1999), and
then present a systematic method to construct the linear algebra SU(1, 1) for one-
dimensional exactly solvable potentials. In Sec. 3, quantum dynamical algebra
SU(1, 1) is established for some one-dimensional exactly solvable potentials. In
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Sec. 4, we discuss the radial Hamiltionian problems, which in some sence can be
viewed as one-dimensional problems. Conclusion and discussion are made in the
last section.

2. QUANTUM DYNAMIC ALGEBRA OF ONE-DIMENSIONAL
POTENTIAL

2.1. Brief Review

The nonlinear deformation algebra (NLDA) as noted in Delbecq and Quesne
(1993) generated by three operators b0 = b

†
0, and b− = (b+)† satisfying

[b0, b−] = −b−g(b0), [b0, b+] = g(b0)b+, [b−, b+] = f (b0). (1)

which can be realized for the Pöschl–Teller (PT) potential pointed out by Chen
et al. (1998). Further, such NLDA of PT potential can be transformed into a SU
(1,1) algebra demonstrated in Chen et al. (1998) and Quesne (1999). The results
are briefly reviewed as follows.

The Hamiltonian is H = p2/2m + V (x) with V (x) = V0/ cos2(kx), and
V0 = εν(ν − 1) accompanying by ε = h̄2k2/2m. After defining the generalized
coordinate X and momentum P ,

X = sin(kx), P = 1

2
k{cos(kx), p},

it found out the shift operator in Eq. (1)

b0 = H,

b− = 1

2ε

[
X

(
ε + 2

√
εH

)
+ ih̄

m
P

]
, (2)

b+ = − 1

2ε

[
X

(
ε − 2

√
εH

)
+ ih̄

m
P

]
ε + √

εH√
εH

.

and

g(H ) = −ε + 2
√

εH,

f (H ) = 1 + 2
√

H/ε + ν(ν − 1)√
H/ε

(√
H/ε − 1

)
Thus it realized the NLDA. Further, through redefining the three generator ele-
ments, that is

J0 =
√

H/ε, J− =
( √

H/ε√
H/ε + 1

)1/2

, J+ = J
†
−
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they satisfied the SU(1, 1) algebra

[J0, J±] = ±J±, [J+, J−] = −2J0.

Therefore, it turned the nonlinear algebra into a linear dynamical algebra for
such special PT potential that possesses a closed operator sets {H,X,P }. Such
procedure also gives a suggestion that for an arbitrary one-dimensional potential, if
finding its closed operator sets {H,X,P }, we can immediately construct the shift
operators and then tune them into a linear algebra. The method to find the closed
operator sets has been discussed in Ge et al. (2000), and in the next subsection we
emphasize the method to tune them into a linear algebra.

2.2. The Main Method

For a given quantum system with Hamiltonian H , if there are generalized
coordinate operator Q and generalized momentum operator P satisfying the fol-
lowing commutation relations as described in Ge et al. (2000)

[H,Q] = Q�1(H ) + P�1(H ),

[H,P ] = Q�2(H ) + P�2(H ),

where �i(H ) and �i(H ) are functions about operator H , it is then able to find
out the shift operators for the energy eigenstates by using the matix-diagonalizing
technique. That is, given

[H, (Q,P )] = (Q,P )

(
�1 �2

�1 �2

)
(3)

diagonalizing the matrix in the right obtain a transformation matrix S and leaves
a diagnolized matrix �. Thus the Eq. (3) can be written as

[H, (Q,P )] = (Q,P )S�S−1

with

� =
(−�1(H ) 0

0 �2(H )

)
.

We can define the shift operators S1 and S2 to be

(S1, S2) = (Q,P )S

which satisfy

H (S1, S2) = (S1, S2)

(
H − �1(H ) 0

0 H + �2(H )

)
(4)



Quantum Dynamical Algebra SU(1,1) in One-Dimensional Exactly Solvable Potentials 2123

Further, for a real function F (H ), holomorphic in the neighborhood of zero, it is
easy to derive the following identity

F (H )(S1, S2) = (S1, S2)

(
F (H − �1) 0

0 F (H + �2)

)
(5)

From the Eqs. (4) and (5) we can always find such operator function b0(H )
that satisfy

b0(H )(S1, S2) = (S1, S2)

(
b0(H ) − 1 0

0 b0(H ) + 1

)
(6)

which have a more familiar form as

[b0, S1] = −S1, [b0, S2] = S2. (7)

Such commutation relation implies a freedom that

b0(H ) → b0(H ) + ξ0 (8)

with ξ0 a constant keeps the Eq. (7) unchangeable. This freedom would be explored
to select out the Lie algebraic element J0. Additionally, the identity (5) evolved
into

G(b0)(S1, S2) = (S1, S2)

(
G(b0 − 1) 0

0 G(b0 + 1)

)
(9)

One noticeable point is that there is a freedom of multiplying a function ξi(b0) on
S1 and S2, that is

S1 → ξ1(b0)S1 or S1ξ1(b0),
(10)

S2 → ξ2(b0)S2 or S2ξ2(b0)

which still satisfy the Eqs. (4) and (5). This freedom can be used to guarantee
finding the Lie algebraic elements J+ and J− from S1 and S2.

As for the constructed shift operators S1 and S2, generally they are not Hermite
conjugate with each other but satisfy

S
†
1 = S2η(b0). (11)

which makes it easy to substitute

b = S1, b† = S
†
1 = S2η(b0) (12)

with b† = (b)†. For the purpose of constructing an algebra structure, we can define

J0 = b0 + ξ0, J+ = b†ξ (b0), J− = ξ (b0)b (13)

which have naturally satisfied

[J0, J+] = J+, [J0, J−] = −J−, J+ = J
†
−,
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and ξ0, ξ (b0) need finally determined by the case

[J+, J−] = ±2J0, (14)

where ‘+’ corresponds to SU(2) while ‘−’ to SU(1, 1).
The commutation relation from the Eqs. (9) and (11) is reduced into

[J+, J−] = b†ξ (b0)2b − ξ (b0)bb†ξ (b0)

= S2S1η(b0 − 1)ξ (b0 − 1)2 − S1S2η(b0)ξ (b0)2

which would be treated in three cases.

• The η(b0) = Constant , but [S1, S2] = f (b0) �= Constant case. We can
simply put, ξ (b0) = ξ (b0 − 1) = Constant , and thus

[J+, J−] = [S2, S1]ηξ = f (b0)ηξ = ±2J0 (15)

• The η(b0) = Constant , but [S1, S2] = Constant case. We must choose
ξ (b0) = f (b0) �= Constant to satisfy

[J+, J−] = [S2, S1f (b0 − 1) − S1, S2f (b0)]ξ 2 = ±2J0 (16)

• The η(b0) �= Constant case. We can choose ξ (b0) �= Constant to satisfy

η(b0 − 1)ξ (b0 − 1)2 = η(b0)ξ (b0)2 = g(b0), (17)

and thus

[J+, J−] = [S2, S1]g(b0) = ±2J0. (18)

In this way, the Eqs. (15)–(17), and (18) can be finally used to derive out the
algebra elements J0, J±.

One simple example concerns the one-dimensional harmonic oscillator with
the Hamiltonian, H = 1

2 (x2 + p2), where x is the coordinate operator and p =
−i(d/dx) is the momentum operator with commutator given by [x, p] = i. For
the commutation relations [H, x] = −ip and [H,p] = ix, they as noted in Ge
et al. (2000) can be succinctly written as

[H, (x, p)] = (x, p)

(
0 i

−i 0

)
.

Finding out its shift operators a and a†, it gives

[H, (a, a†)] = (a, a†)

(−1 0
0 1

)

in which a ≡ (1/
√

2)(x + ip) and a† ≡ (1/
√

2)(x − ip) with

aa† = H + 1

2
, [a, a†] = 1. (19)
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Thus, from Eqs. (6) and (12) we know

J0 = H, b = a, b† = a†. (20)

It belongs to the second case. Inserting Eqs. (19) and (20) into Eq. (16), it deduces(
H − 1

2

)
ξ (H − 1)2 −

(
H + 1

2

)
ξ (H )2 = −2H.

Obviously, by choosing ξ (H )2 = H + 1/2, the above equation would hold. There-
fore, the one-dimensional harmonic oscillator has a SU(1,1) algebra with

J0 = H, J+ = a†√H + 1/2, J− =
√

H + 1/2a.

3. QUANTUM DYNAMICAL ALGEBRA FOR MORE POTENTIALS

As pointed out in Ge et al. (2000), the shift operators of a class of solvable one-
dimension potentials can be found by using the matrix-diagonalizing technique.
In the following, we will continue to explore such technique to display that all
these potentials possess either a SU(1,1) or a SU(2) algebra. To this end, we begin
with the following Hamiltonian:

H = X(x)
d2

dx2
+ V (x),

where X(x) is an arbitrary function of position and V (x) is an arbitrary potential.
Define

P (x, p) = Y (x)
d

dx
+ Z(x);

with arbitrary functions Y (x) and Z(x) to be determined. The following commu-
tation relations hold

[H,P (x)] = Q(x)(βH + 1) + αP + γH,
(21)

[H,Q(x)] = 2λP + νQ(x) + τ.

with

Q(x) = 1

1 + βV (x)

[
X(x)Z′′(x) − γV (x) − αZ(x) − Y (x)V ′(x)

]
. (22)

Concomitantly, X(x), V (x), Y (x) and Z(x) satisfy

X(x)[Y ′′(x) + 2Z′(x)] = αY (x),
2X(x)Y ′(x) = X′(x)Y (x) = [βQ(x) + γ ]X(x),
X(x)Q′(x) = λY (x),
−2λZ(x) + X(x)Q′′(x) = νQ(x) + τ.

(23)
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In the construction, we should bear in mind that Y (x), Z(x), Q(x), and α, β, γ , λ,
ν, τ , are all determined by X(x) and V (x) when we construct the shift operators
for a given Hamiltonian. Conversely, if we proceed with a systematic search for
exactly solvable potentials based on this method, we can have as many degrees
of freedom as there are free parameters and functions, namely, X(x), Y (x), Z(x),
Q(x), and α, β, γ , λ, ν, τ .

3.1. The X(x) = −1, Y (x) = i Case

By substituting into Eq. (23), we solved

Q(x) = −iλx + ci, Z(x) = − i

2
αx + c2, (24)

and

V (x) = 1

2

(
λ + α2

2

)
x2 − (c1 + αc2)ix + c3, (25)

with β = 0, γ = 0, ν = −α and τ = −c1ν − 2λc2. This is the harmonic oscillator
when the coefficient λ + α2/2 > 0. For the requirement of Hermitian operators
H and P , it requires the parameters α, c1 being imaginary numbers while γ , c2,
c3 real numbers.

The closed operator set {H, Q̃, P̃ } satisfy the commutation relations

[H, Q̃] = −αQ̃ + 2λP̃ , [H, P̃ ] = Q̃ + αP̃ . (26)

or more succinctly as

[H, (Q̃, P̃ )] = (Q̃, P̃ )

(−α 1
2λ α

)
(27)

in which

Q̃ = Q + α
2λc2 + νc1

α2 + 2λ
= −iλx + c1 + α

2λc2 + νc1

α2 + 2λ
,

(28)

P̃ = P − 2λc2 + νc1

α2 + 2λ
= i

d

dx
− i

2
αx + α2c2 − νc1

α2 + 2λ
.

It can be easily diagonalized to give the shift operators S1 and S2 which satisfied
the commutation relation

[H, (S1, S2)] = (S1, S2)

(−√
α2 + 2λ 0

0
√

α2 + 2λ

)
(29)

with

S1 = 1

α − √
α2 + 2λ

Q̃ + P̃ ,
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S2 = 1

α + √
α2 + 2λ

Q̃ + P̃ (30)

which satisfy the relation (S1)† = S2 and

[S1, S2] =
√

α2 + 2λ. (31)

So it belongs to the second case. Thus, we can obtain a SU(1, 1) algebra according
to the second treatment after defining

J0 = H/
√

α2 + 2λ, (32)

J− =
√

J0 + 1/2

(α2 + 2λ)1/4
b, J+ = b†

√
J0 + 1/2

(α2 + 2λ)1/4
. (33)

3.2. The X(x) = −1, Y (x) = x Case

By substituting into Eq. (23), we solved

Q(x) = −λ

2
x2 + c1, Z(x) = −α

4
x2 + c2, (34)

and

V (x) = 1

16
(α2 + 2λ)x2 + c3

x2
+ 1

2

(α

2
− αc2 − c1

)
, (35)

with β = 0, γ = 2, ν = −α and τ = (1 − 2c2)λ + αc1. this gives us the radial
harmonic oscillator potential.

The closed operator set {H, Q̃, P̃ } satisfy the commutation relations

[H, (Q̃, P̃ )] = (Q̃, P̃ )

(−α 1
2λ α

)
(36)

in which

Q̃ = Q + 4λ

α2 + 2λ
H − α

α2 + 2λ
(λ + αc1 − 2λc2)

= −λ

2
x2 + c1 + 4λ

α2 + 2λ
H − α

α2 + 2λ
(λ + αc1 − 2λc2),

P̃ = x
d

dx
− α

4
x2 + c2 + 2α

α2 + 2λ
H + 1

α2 + 2λ
(λ + αc1 − 2λc2).

The shift operators S1 and S2 which satisfied the commutation relation

[H, (S1, S2)] = (S1, S2)

(−√
α2 + 2λ 0

0
√

α2 + 2λ

)
, (37)
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and

[S1, S2] = 16
λ√

α2 + 2λ

[
H − 1

2

(α

2
− αc2 − c1

)]
,

with

S1 = Q̃ + (α −
√

α2 + 2λ)P̃ ,

S2 = Q̃ + (α +
√

α2 + 2λ)P̃

The shift operator S1 and S2 have

S
†
1 =

(
1 + α2 − α

√
α2 + 2λ

λ

)
Q̃ +

(
−α +

√
α2 + 2λ

)
P̃

= S2

(
1 + α2 − α

√
α2 + 2λ

λ

)

Therefore we can define

b0 = H√
α2 + 2λ

, b = S1,

b† = S2

(
1 + α2 − α

√
α2 + 2λ

λ

)
.

Thus it belongs to the first case. According to the first treatment, we can define
again

J0 = b0 − 1

2
√

α2 + 2λ

(α

2
− αc2 − c1

)
(38)

J+ = 1

2
√

2
(α2 + λ − α

√
α2 + 2λ)−1/2b†, (39)

J− = 1

2
√

2
(α2 + λ − α

√
α2 + 2λ)−1/2b, (40)

which satisfy the SU(1,1) algebra

[J+, J−] = −2J0.

3.3. The X(x) = −1, Y (x) = aecx + be−cx Case

By substituting into Eq. (23), we solved

Q(x) = −λ

c
(ae−cx − be−cx) + c1, (41)
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Z(x) = −α + c2

2c
(aecx − be−cx) + c2, (42)

and

V (x) = c3(aecx + be−cx)−2 + (α + c2)2 + c4 + 2λ

4c2
, (43)

with β = −2c2/λ, γ = 2c2c1/λ, ν = −α − 2c2, τ = −2λc2 − νc1, and c1 +
αc2 = 0. This gives us the second Pöschl–Teller potential.

The closed operator set {H, Q̃, P̃ } satisfy the commutation relations

[H, (Q̃, P̃ )] = (Q̃, P̃ )

(−α − 2c2 1 − 2c2

λ
H

2λ α

)
(44)

in which

Q̃ = Q − c1 = −λ

c
(aecx − be−cx) (45)

P̃ = P + c1

α
− (aecx + be−cx)

d

dx
− α + c2

2c
(aecx − be−cx) (46)

The shift operators S1 and S2 satisfy the commutation relation

[H, S1] = S1[−c2 −
√

(α + c2)2 + 2λ − 4c2H ], (47)

[H, S2] = S2[−c2 +
√

(α + c2)2 + 2λ − 4c2H ]. (48)

with

S1 = −Q̃
1

2λ
[α + c2 +

√
(α + c2)2 + 2λ − 4c2H ] + P̃ ,

S2 = −Q̃
1

2λ
[α + c2 −

√
(α + c2)2 + 2λ − 4c2H ] + P̃ . (49)

and

[S1, S2] = −8abc2b0,

S
†
2 = S1

[
2c2√

(a + c2)2 + 2λ − 4c2H
− 1

]
.

From the Eq. (5), it gives

[
√

(α + c2)2 + 2λ − 4c2H, S1] = 2c2S1, (50)

[
√

(α + c2)2 + 2λ − 4c2H, S2] = −2c2S2, (51)
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Therefore we can define

b0 = 1

2c2

√
(α + c2)2 + 2λ − 4c2H,

(52)

b = S2, b† = S1

[
2c2√

(α + c2)2 + 2λ − 4c2H
− 1

]
.

It belongs to the third case and according to the third treatment, the Eqs. (17)
and (18) becomes(

1

b0 − 1
− 1

)
ξ (b0 − 1)2 =

(
1

b0
− 1

)
ξ (b0)2, (53)

[J+, J−] = [S1, S2]η(b0)ξ 2(b0) (54)

There is a simplest choice for ξ (b0) to satisfy the Eq. (53), that is

ξ (b0)2 = ξ1
b0

1 − b0
, (55)

where ξ1 is also a undetermined constant. Insert it into Eq. (54), we can determine
the two constants ξ0 and ξ1 as

ξ0 = 0, ξ1 = 1

4abc2
(56)

Finally, we can realize our algebraic structure by defining again

J0 = b0, J− = 1√
4abc2

√
b0

b0 − 1
b, J+ = 1√

4abc2
b†

√
b0

b0 − 1
(57)

which satisfy the SU(1, 1) algebra,

[J0, J−] = −J−, [J0, J+] = J+, [J+, J−] = −2J0.

3.4. The X(x) = −1, Y (x) = a sin(kx) + b cos kx Case

By substituting into Eq. (23), we solved

Q(x) = λ

k
[a cos(kx) − b sin(kx)] + c1, (58)

Z(x) = α − k2

2k
[a cos kx − b sin kx] + c2, (59)

and

V (x) = c3(a sin kx + b cos kx)−2 − (α − k2)2 + 2λ

4k2
, (60)
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with β = 2k2/λ, γ = −2k2c1/λ, ν = −α + 2k2, τ = c2(α − 2k2) − 2λc1, and
c1 + αc2 = 0. This gives us the first Pöschl–Teller potential.

The closed operator set {H, Q̃, P̃ } satisfy the commutation relations

[H, (Q̃, P̃ )] = (Q̃, P̃ )

(
2k2 − α 1 + 2k2

λ
H

2λ α

)
(61)

in which

Q̃ = Q − c1 = λ

k
(a cos kx − b sin kx) (62)

P̃ = P − c2 = (a sin kx + b cos kx)
d

dx
+ α − k2

2k
(a cos kx − b sin kx) (63)

The shift operators S1 and S2 which satisfied the commutation relation

[H, S1] = S1[k2 −
√

(α − k2)2 + 2λ + 4k2H ],

[H, S2] = S2[k2 +
√

(α − k2)2 + 2λ + 4k2H ].

with

S1 = −Q̃
1

2λ
[α − k2 +

√
(α − k2)2 + 2λ + 4k2H ] + P̃ ,

S2 = −Q̃
1

2λ
[α − k2 −

√
(α − k2)2 + 2λ + 4k2H ] + P̃ .

We can derive that

S
†
1 = −S2

[
1 + 2k2√

(α − k2)2 + 2λ + 4k2H

]

[S1, S2] = −(a2 + b2)
√

(α − k2)2 + 2λ + 4k2H.

From the Eq. (5), it gives

[
√

(α − k2)2 + 2λ + 4k2H, S1] = −2k2S1, (64)

[
√

(α − k2)2 + 2λ + 4k2H, S2] = 2k2S2, (65)

Therefore it is easy to define

b0 = 1

2k2

√
(α − k2)2 + 2λ + 4k2H, (66)

b = S1,

b† = S
†
1 = −S2

[
1 + 2k2√

(α − k2)2 + 2λ + 4k2H

]
. (67)
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It belongs to the third case, and according to the treatment the Eqs. (17) and (18)
becomes (

1 + 1

b0

)
ξ (b0)2 =

(
1 + 1

b0 − 1

)
ξ (b0 − 1)2, (68)

[J+, J−] = [S1, S2]

(
1 + 1

b0

)
ξ (b0)2. (69)

The simplest choice for ξ (b0) satisfying the condition (68) is

ξ (b0)2 = ξ1
b0

b0 + 1
. (70)

Taking this choice into the Eq. (69), we obtain

[J+, J−] = −2k2(a2 + b2)ξ1b0, (71)

which at the case of the SU(1, 1) requires

ξ1 = 1

k2(a2 + b2)
(72)

Finally, we can realize our algebraic structure by defining again

J0 = b0, J− = 1

k
√

a2 + b2

√
b0

b0 + 1
b, J+ = 1

k
√

a2 + b2
b†

√
b0

b0 + 1
(73)

which satisfy the SU(1, 1) algebra,

[J0, J−] = −J−, [J0, J+] = J+, [J+, J−] = −2J0.

4. EXTENDED TO RADIAL POTENTIALS

At case of dealing with the spherically symmetric potentials, their wave-
functions can be divided into angular parts Ylm(θ, ϕ) and radial parts Rl(r). For
the radial part Rl(r), that it only depends on one variable is similar to the one-
dimensional problem, so that we can try to use the methods introduced above to
discuss it more or less.

Moreover, the radial part of the Schrödinger equation is generally written as[
d2

dr2
+ 2µ

h̄2 (E − V (r)) − l(l + 1)

r2

]
χl(r) = 0,

where χ (r) = Rl(r)r . We now try to discuss the radial Coulomb problem or more
its extension of Kratzer’s molecular potential by using the above method. Their
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Schrödinger equations are

(
− d2

dr2
+ l(l + 1)

r2
− 2Z

r
+ Z2

n2

)
ψn,l = 0

[
− d2

dr2
+ l(l + 1) + Da2

r2
− 2Da

r
+ D2a2

(n + 1/2 +
√

(l + 1/2)2 + γ 2)2

]
ψn,l =0

which if making the substitutions ρ = (Z/n)r or ρ = Da

n+1/2+
√

(l+1)2+γ 2
r can be

transformed into the easily disposed forms

[
− d2

dρ2
+ l(l + 1)

ρ2
+ 1 − 2n

ρ

]
ψn,l = 0,

⎡
⎣− d2

dρ2
+ l(l + 1) + Da2

ρ2
+ 1 − 2

n + 1
2 +

√(
l + 1

2

)2 + γ 2

ρ

⎤
⎦ ψn,l = 0.

Further, such form has two extended deformations which by virtue of the method
discussed above are related to the energy quantum number n and the orbital
quantum number l, respectively. One of the deformations is

[
−ρ

d2

dρ2
+ l(l + 1)

ρ
+ ρ

]
ψn,l = 2nψn,l,

[
−ρ

d2

dρ2
+ l(l + 1) + Da2

ρ2
+ ρ

]
ψn,l = 2

⎡
⎣n + 1

2
+

√(
l + 1

2

)2

+ γ 2

⎤
⎦ψn,l .

(74)

And the other one is
[
−ρ2 d2

dρ2
+ρ2 − 2nρ + l2

]
ψn,l =−lψn,l,

⎡
⎣−ρ2 d2

dρ2
+ρ2−2

⎛
⎝n + 1

2
+

√(
l + 1

2

)2

+ γ 2

⎞
⎠ ρ + l2+Da2

⎤
⎦ ψn,l =−lψn,l .

(75)

The left hand of the above deformed Shrödinger equations may well be called
pseudo-Hamiltonian, which are no longer self-adjoint.
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4.1. The X(x) = −x, Y (x) = x Case

By substituting into Eq. (23), we solved

Q(x) = −λx + c1,

Z(x) = −α

2
x + c2,

and

V (x) = 1

2

(
λ + α2

2

)
x + c3

x
− (c1 + αc2),

with β = 0, γ = 1, ν = −α, τ = −2λc2 − νc1, and c1 + αc2 = 0. This is the case
of the first deformation [see Eq. (74)].

The closed operator set {H, Q̃, P̃ } satisfy the commutation relations

[H, (Q̃, P̃ )] = (Q̃, P̃ )

(−α 1
2λ α

)

in which

Q̃ = Q + 2λH − α2c1 + 2λc2α

α2 + 2λ
= −λx + 2λ

α2 + 2λ
H + 2λ

c1 + c2α

α2 + 2λ

P̃ = P + αH + αc1 − 2λc2

2λ + α2
= x

d

dx
− α

2
x + α

α2 + 2λ
H + α

c1 + αc2

α2 + 2λ

The shift operators S1 and S2 satisfy the commutation relation

[H, (S1, S2)] = (S1, S2)

(−√
α2 + 2λ 0

0
√

α2 + 2λ

)
.

with

S1 = −Q̃
α + √

α2 + 2λ

2λ
+ P̃ ,

S2 = −Q̃
α − √

α2 + 2λ

2λ
+ P̃ .

which have

S
†
1 = −S2 − 1 + 1√

α2 + 2λ

d

dx
,

[S1, S2] = − 2√
α2 + 2λ

(H + c1 + αc2).

Here if we still define

b0 = H√
α2 + 2λ

, b− = S1, b+ = S2.
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they can satisfy

[b0, b] = −b, [b0, b
†] = b†

but b
†
0 �= b0 and b

†
− �= b+. So for such pseudo-Hamiltonian we can realize its

algebraic structure by defining again

J0 = b0 + c1 + αc2√
α2 + 2λ

, J+ = b†, J− = b. (76)

which satisfy [J+, J−] = −2J0 but at a price of J
†
0 �= J0 and J

†
− �= J+. So it

does not mean we have constructed a SU(1, 1) algebra.

4.2. The X(x) = −x2, Y (x) = 1 Case

By substituting into Eq. (23), we solved

Q(x) = λ

x
+ τ

2
, (77)

Z(x) = 0, (78)

and

V (x) = −c3x
2 + γ λ

2
x + λ

2

with β = −2/λ, 2γ = −βτ, ν = −2 and α = 0. This is simply the case of the
second deformation [see Eq. (75)].

The closed operator set {H, Q̃, P̃ } satisfy the commutation relation

[H, Q̃, P̃ ] = (Q̃, P̃ )

(−2 − 2
λ
H + 1

2λ 0

)

in which

Q̃ = λ

x
+ τ

2
+ τ

λ − 2H
H,

P̃ = d

dx
+ τ

2(λ − 2H )
.

[H, (S1, S2)] = (S1, S2)

(−1 + √
1 + 2λ − 4H 0

0 −1 − √
1 + 2λ − 4H

)
.

[
√

1 + 2λ − 4H, (S1, S2)] = (S1, S2)

(−2 0
0 2

)
.
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with

S1 = Q̃(
√

1 + 2λ − 4H − 1) + 2λP̃ ,

S2 = −Q̃(
√

1 + 2λ − 4H + 1) + 2λP̃ .

So we can define

J0 = 1

2

√
1 + 2λ − 4H, J− = S1, J+ = S2

which can satisfy

[J0, J−] = −J−, [J0, J+] = J+.

5. DISCUSSION AND CONCLUSION

We mainly explore the linear algebraic structure like SU(2) or SU(1,1) of the
shift operators for some one-dimensional exactly solvable potentials in this paper.
During such process, a set of method based on original diagonalizing technique
is presented to construct those suitable operator elements, J0, J± that satisfy SU
(2) or SU (1,1) algebra. A quick glance at the energy levels of the various cases
shows that new-defined element operator J0 has the same eigenvalues as that of
the Hamiltonian of the harmonic oscillator. This fact also confirms to some extent
that the local behavior of the most solvable potentials reduces to the harmonic
oscillator (Wehrhahn, 1992). With J−ψ0 = 0, we can get the ground state ψ0, and
J+ψn = Cψn+1 to get the whole spectrum. At the same time, J0ψn = nψn would
indirectly give out the eigenvalues of Hamiltonian H .

Since the importance of spherically symmetric potentials in quantum mechan-
ics, in Sec. 4 we discuss the deformed radial Hamiltonian of the hydrogen atom
and Kratzer’s molecular potential, though they do not have a complete SU(1,1)
algebra for the non-hermite pseudo-Hamiltonian. By exploring the un-deformed
Hamiltonian with known radial raising and lowering operators (Newmarch and
Golding, 1978; Chen et al., 2000), it is expected that a complete SU(1,1) algebra
may arises.

At last, the similarity between radial problem and one-dimensional potentials
encourages us to deal with the radial problem in the same way. And the corre-
sponding algebra turns to approach SU(1, 1) algebra but for J0 �= J

†
0 , J

†
+ �= J−.
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Znojil, M., Lévai, G., Roy, P., and Roychoudhury, R. (2001). Physics Letters B 290, 249.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


